
Approved for public release; further dissemination unlimited

UCRL-ID-153221

Research Report on
Feasibility Study of
Building a QT Gui Testing
Tool-AX Program Code
Group Computer Science
R & D Project (U)

Benjamin T. Grover

May 5, 2003

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U. S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

 This report has been reproduced directly from the best available copy.

 Available electronically at http://www.doc.gov/bridge

 Available for a processing fee to U.S. Department of Energy
 And its contractors in paper from

 U.S. Department of Energy
 Office of Scientific and Technical Information

 P.O. Box 62
 Oak Ridge, TN 37831-0062
 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728

 E-mail: reports@adonis.osti.gov

 Available for the sale to the public from
 U.S. Department of Commerce

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900

 E-mail: orders@ntis.fedworld.gov
 Online ordering: http://www.ntis.gov/ordering.htm

 OR

 Lawrence Livermore National Laboratory
 Technical Information Department’s Digital Library

 http://www.llnl.gov/tid/Library.html

Research Report on: Feasibility study of building a QT GUI testing tool, AX-Program
Code Group Computer Science R&D Project
Benjamin T. Grover, PMesh Project

Participating Employee:
Benjamin T. Grover

Start Date: November 15, 2002 End Date: March 1, 2003

Background:

See Appendix A, Proposal

This project addressed the need for a GUI quality assurance testing tool for the
PMESH project. We currently do not have any automated method for testing our GUI.
Commercial GUI test tools do exist, but only one exists to test Qt. This project consisted
of building an in house Qt GUI test tool and trying out the one commercial tool that tests
Qt.

Proposal Summary:

The main goal of this project was to determine if a tool could be built to test Qt.
In determining the feasibility of building a tool the following requirements needed to be
researched:

1. Determine if the underlying Qt signal/slot architecture could be leveraged.
2. Research how much impact implementing such a tool would have on existing

code, i.e. how much extra code would need to be inserted to use the tool.
3. Determine with the above information if a tool could be built.

With the above steps completed, the information needed to make a decision on building a
tool could be made. Armed with this information I felt I could make a more educated
decision on the possibility of building a tool.

Project Overview:

This project was divided into two main steps. The first step was to understand the
underlying Qt source code much better. The second step was to build a small prototype
that I could use to test ideas. The first step was actually much shorter than I had
originally anticipated. Understanding the underlying architecture of Qt only took about
two weeks. After studying the architecture of qt and working with the support people at
Trolltech, the company that develops Qt, I found a way to test Qt.

In my proposal I figured I could use the signal/slot architecture of Qt to test the GUI, but
I found that I could only directly use the slots. The signals in Qt are protected methods of
the class that they reside in. This meant that if I could manage to find out what signals
were being used for a given event, such as a button press, I still could not re-emit that

signal. After hitting this roadblock I found a way to monitor all events that were
happening in Qt via an event filter. This filter enabled me to play big brother and watch
everything that was going on in the GUI. Events are stand alone objects and can be
emitted without any ownership violations. In fact re-emitting events was a better idea
than using signals, because an event is really the point of entry from the underlying
window manager to Qt. When Qt receives an event from the underlying system it emits a
signal. With this capability and information I was ready to build a prototype.

The prototype I built consisted of a small application that would print items out to
standard output upon the press of a button. The prototype also had an object window that
would allow me to see the events as they happened as well as give me the ability to
replay events and save the events to a file. This prototype allowed me to take an even
deeper look into what was going on in Qt. The prototype did not have all the
functionality needed for a full scale tool such as full automation, but it did give enough
information to realize that building a tool would be feasible. My days of research usually
consisted of trying to get the test application to do things in many different ways, and
then see if I could re-create the same events I had just executed. In some cases it could,
in other cases I found out things I had overlooked or did not understand. I would then
remedy those cases and move on and try something new.

In the middle of testing my prototype (January 2003) I heard of a newly released tool
called KDRunner. KDRunner is made by Klarälvdalens Datakonsult in Sweden.
KDRunner basically did the same thing that I had set out to do: test Qt effectively. Since
this was a feasibility study, part of the study was to find other tools that may work,
instead of building my own. I downloaded and tested an evaluation version of the tool.
The tool worked relatively well, but was no better than the tool I had already developed.
In fact it wasn’t able to recreate some events that my tool could. I decided to stick with
the tool I was working on. KDRunner may improve as it gets more users and matures a
little, but I felt more comfortable using the tool I had developed, and I felt that my tool
could test better then KDRunner.

Since I was able to make a lot more progress on this tool than I had originally anticipated,
as a last test I hooked up the prototype to the mesh generation tool Draco. I wanted to see
if I could actually use this tool for what it was intended for. After working out a few
glitches it was able to replay multiple scripts to Draco.

Project Summary:

This project was very successful. I accomplished everything I intended to do. I learned
and understood the inner workings of the Qt library enough that I could build a simple
tool that could leverage some of the information in Qt to test the GUI. I was also able to
find a tool that was commercially available to test Qt GUI’s. These two things were the
main goals of this project. Therefore I consider it a success. In fact I was able to
progress farther with my prototype testing then I had originally planned.

Future Work:

There is still much to be done to have an effective testing tool for Qt GUI’s. Below is a
list of tasks that still need to be accomplished:

∑ Build on the prototype testing tool to make it more robust, user friendly and
functional.

∑ The prototype currently records some actions such as mouse coordinates. This is
not desirable. The final product should record user intentions that are carried out
via mouse movements. Along this same line the developer should be able to
enhance the tester for special widgets so it can record the correct behavior.

∑ Build into the code the ability for the developer to carry out pre and post
conditions tests as they test the GUI. {Partly Done}

∑ Look into making the output script a little more readable. Currently, the script is
tab delimited text. This can be hard to read.

References:
www.trolltech.com
www.klaralvdalens-datakonsult.se

Appendix A: Proposal

Proposal to look into the feasibility of building a Qt GUI testing tool
Benjamin T. Grover, PMesh Project

Background:

Graphical user interface (GUI) software testing is an inherently complex problem.
On the website
http://www.csst-technologies.com/genericGraphical_User_Interface_Testing.html some
of the problems of GUI testing are outlined. Some problems are:

1.GUI's are an event driven environment, meaning any number of event sequences can
happen depending on what the user desires, there is usually no one logical flow of
events.

2.GUI's have multiple input media. The mouse and keyboard can be used either
independently or together.

3.GUI's are usually built to function on multiple platforms. These allows simpler
software development, but each system handles events differently. Consequently each
system may open windows in different areas of the screen compared to another
system.

While I was in college I worked as a software tester at Novell. I was hired to test
the functionality of our GUI's that were in use at Novell. I manually tired to test every
facet of the GUI by using a set of written test cases. I had to open dialogues, press
buttons, resize windows and do many other things to make sure our GUI worked
correctly. The only alternative that I know of to testing a GUI is to get an automated tool
that records a tester's keystrokes and mouse movements. These type of programs work
OK if nothing new is added to the layout of the GUI, or new functionality is not added.
If anything changes on the GUI the mouse movements and keystrokes must be re-
recorded. It is an inefficient process at best.

In order to solve the cross platform (linux, aix4, solaris, etc.) development
problem that we face here at the lab my group (Pmesh) uses the Qt software library to
develop and build our GUI. Qt is simple to use, it is open source, and is written in C++.
For these reasons Qt is a popular tool both inside and outside the Lab. Some other groups
that us Qt: VisIt project in B division, and it is being considered by the Arachne project in
A division.

Qt uses a signal and slot architecture to run the GUI. Basically this means that
when an event happens, e.g. Button press, menu item selected, etc., a signal is sent. This
signal is received by a slot which executes commands when it receives the correct signal.
This signal/slot architecture can be utilized to test the GUI.

Proposal:

I would like to look into the feasibility of creating an automated testing tool for
Qt. This is not a proposal to create the tool, but instead a proposal to spend time getting
all the information and ideas I need to write a proposal asking permission to actually
build this testing tool. Some questions I will answer as I gather information and do
research:

1.Do any good testing tools already exist? I have already looked around quite a bit on
the internet and have found some tools out there but they mostly record keystrokes and
mouse movements. I have not been able to find any good testing tools that leverage
Qt's signal and slot architecture. I do know there is interest in this though, because I
have seen many message threads talking about building a good testing tool for Qt.
There are some tools out there that are very similar to what I would like to build for
Qt but they use the Motif library, not Qt.

2.How can the testing tool be built, so the developer doesn't need to test each GUI
manually? In this case I have a plan to leverage the signal and slot information
inherent in Qt. I hope to eventually make a tool, that captures all the signals for a
given dialogue and fires the signals and checks to make sure all the slots execute
correctly. The signals will be recorded in a script that can be run. I hope that this
program requires very little developer time, i.e. they can down load it and link it with
their program and it basically does the rest.

Importance to the Code Group:

This project if it succeeds, will be very helpful to the code group as well as
anybody else that uses the Qt libraries. It will address the need of being able to test all
aspects of the GUI in an automatic way. This will insure a higher quality software
product as well as free up developer time to do more important tasks.

Involvement:

I will mostly be involved in doing this research. I will also collaborate with some
of my colleagues at the lab as well as some at Sandia National Labs.

Time:
This research will take one quarter, probably 2 hours a day.

Milestones:
1.Find the information I need about the underlying Qt framework specifically the

signal and slot information.
2.Determine if the signal and slot information can be extracted easily from the

code being tested.

3.Determine if a lot of new code will need to be inserted into the existing code to
extract the signal/slot information.

4.Determine if the GUI could be tested well with the signal slot information found.
5.Decide on the feasibility of submitting another proposal to build an actual testing

tool.

Reference:
www.trolltech.com (Qt web page)

U
niversity of C

alifornia
L

aw
rence L

iverm
ore N

ational L
aboratory

Technical Inform
ation D

epartm
ent

L
iverm

ore, C
A

 94551

